David J. Margolis

David J. Margolis

Associate Professor
(848) 445-9533
(732) 445-1794
B243 Nelson Labs
In vivo imaging of neural circuit plasticity

Sc.B., Brown University, Providence RI
Ph.D., University of Washington, Seattle WA

Postdoctoral training: Fritjof Helmchen, advisor. University of Zurich, Switzerland. 

NARSAD Young Investigator
Whitehall Foundation Fellow
Associate Editor, Frontiers in Neural Circuits
Editorial Board, Scientific Reports
Graduate Faculty, Molecular Biosciences
Graduate Faculty, Biomedical Engineering

In vivo imaging of neural circuit plasticity


Visualizing long-term circuit plasticity

Changes in neural circuit activity play a critical role in many aspects of nervous system function throughout life, from development to learning and the progression of disease. We study how neural circuits of the mouse neocortex encode the sensory environment, and how the rules of encoding undergo plasticity during altered sensory experience. We use chronic in vivo imaging techniques to measure functional changes of both large-scale activity maps and the underlying local neuronal populations. Two-photon imaging of neurons expressing genetically encoded activity sensors allows us to repeatedly measure activity of the exact same neurons over days and weeks as plasticity takes place. Defining the logic of functional plasticity within cortical circuits has implications for understanding how the brain changes under pathological conditions and for identifying cellular targets to enhance functional recovery. 


We are interested in:

The roles of genetically and anatomically defined types of cortical neurons in sensory processing and plasticity. What are the relative contributions of excitatory and inhibitory neurons to the expression of plasticity? Do microcircuits of excitatory neurons undergo specific forms of plasticity depending on their axonal projection targets?

Effects of learning on sensory and sensorimotor processing. Do learning and sensory deprivation impact ensemble activity by similar mechanisms? How is local and large-scale neural circuit activity modified over weeks during the transition from learning to memory to forgetting? We approach these questions by imaging brain activity as mice learn to perform simple behaviors.

Alteration of neuronal circuit function by injury and disease. We investigate the effects of traumatic brain injury (TBI) on neural circuits and behavior.


For CBN's main publication search, click here.

Neural circuit function and plasticity in mice

Fall: No
Spring: Maybe
Summer: Maybe